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Over the last few years, an increased awarenes of endocrine disrupting chemicals (EDCs) and
their potential to affect wildlife and humans has produced a demand for practical screening
methods to identify endocrine activity in a wide ran of environment adi.ndustrial chemi-
cals. While it is clear that in viva methods will be required to identif adverse effects produced
by these chemicals, in vitro asays can define particular mechanisms of action and have the
potential to be employed as rapid and low-cost screens for use in large scale EDC sc gpro-
grams. Traditional estrogen receptor (ER) binding assays are usefil for characterizing a chemi-
cal's potenti to be an estogen-g EDC, but they involve displacement of a radioactive lig-
and from crude receptor preparations at low temperatures. The ess of these assays for
realisticaly determ g the ER binding interactions of weakly estrogenic environmentl and
industrial compounds that have low aqueous solubility is undear. In this repo, we present a
novel fluoresnce polarization (FP) method that measures the capacity ofa competitor chemical
to displace a high affinity fluorescent ligand from purified, recombinant human ER-a at room
temperature. The ER-cc binding interactions generated for 15 natural and synthetic compounds
were found to be similar to those dete with traditional receptor binding assays. We abo
discuss the potental to employ this FP nology to binding studies involving ER-,B and other
rceptors. Thus, the assay induced in this study is a nonradioactivereeptor binding method
that shows promise as a high throughput screenin metod for large-scale teting of environ-
mentl and industal chemicals for ER binding intecons. Key work competition binding,
endocrine disruptor screening, estrogen, estrogen receptor, fluorescence polarizaion. Environ
Healt Peorp 106:551-557 (1998). [Online 6 August 1998]
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Reports in the last few years describing
apparent increases in developmental, repro-
ductive, or behavioral abnormalities as well
as certain types of cancer in wildlife (1-4) or
humans (5-7) have resulted in a worldwide
intensification of research efforts to charac-
terize endocrine disrupting chemicals
(EDCs). Even though there are few, but sig-
nificant, examples of a direct link from expo-
sure to an EDC to adverse effects in humans
(8-10), many of the mechanistic pathways
mediating the deleterious effects resulting
from EDC exposure ofwildlife and laborato-
ry animals have been elucidated (1,11-15).
As a result, screening for endocrine activity
has recently been mandated-in the United
States by the Food Quality Protection Act
(Public Law 104-170) and the Safe Drinking
Water Act amendments (Public Law 104-
182) of 1996. Recent workshops have dari-
fied the definition of EDCs (16), identified
research needs (16-18), and reviewed poten-
tial EDC screening methods (19-22). While
it is clear that a spectrum of in vivo screens
may be required to characterize a compound
as an EDC that can cause adverse effects in
exposed organisms, in vitro assays are
required to define the molecular mechanisms
responsible for these effects. The enormous
task of screening tens of thousands of natural
and man-made chemicals for EDC activity

suggests that in vitro assays are the most
practical means to quickly identify com-
pounds which may have the potential to
cause adverse endocrine disruption effects in
whole organisms.

Many of the adverse effects and bio-
chemical mechanisms of action of EDCs
identified over the last 20 years have been
attributed to environmental estrogens
(11,23-30). These substances mimic or
block the activity of natural estrogens by
specifically binding to the estrogen receptor
(ER) nuclear protein, resulting in the tran-
scriptional control of a variety of genes in
target cells. ER-a is a 66 kDa transcription
factor that regulates expression of genes
involved in tissue growth and differentia-
tion, functioning in diverse target tissues
including reproductive, skeletal, cardiovas-
cular, and mammary tumors (31,32). ER
and other steroid hormone-receptors are
activated by one or more endogenous lig-
ands that bind with high affinity to the
receptor's carboxy-terminal hormone bind-
ing domain. Ligand binding initiates a
number of changes in the receptor includ-
ing altered conformation, dimerization, and
changes in interaction with other proteins
(33). The hormone-receptor complex, with
or without the involvement of other tran-
scriptional accessory proteins, binds to

DNA response elements through the recep-
tor's DNA binding domain, thereby induc-
ing or suppressing transcription of the target
genes (34-36). Competitive inhibitors ofER
(antiestrogens; e.g., tamoxifen), have been
developed by the pharmaceutical industry to
treat hormonally responsive breast cancer
that blocks ER action in target tissues
(37,38). The recent cloning of a second
estrogen receptor, ER-,, led to the discovery
that it and the dassic estrogen receptor ER-a
differ in their affinity for some estrogens and
respond to ligand binding in different ways,
depending on the DNA response element
involved (39). For instance, 17f-estradiol
(E2) bound to ER-a enhanced transcription
through the AP-1 response element regulated
reporter; however, when E2 interacted with
ER-,, transcription of the same reporter was
minimal. These studies highlight the com-
plexity ofER interactions with hormone and
DNA and shed light on the variety of subse-
quent downstream effects that might be
observed in tissues sensitive to natural and
synthetic estrogenic compounds (40). Thus,
in vitro screening methods that evaluate the
ability of a compound to bind ER and/or
modulate ER-mediated gene regulation
events are useful for identifying environmen-
tal estrogens (21,41).

Several methods are used to follow lig-
and-ER binding interactions (20,22,42,43).
AU are competitive assays in which the test
compound displaces a receptor-bound probe
molecule, usually radioactive E2. While there
are compelling reasons why these assays are
well suited for large-scale screening of ER
competitors, they suffer from a number of
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important shortcomings, including the use
of crude receptor preparations from cells or
tissue, binding incubations at subphysiologi-
cal temperatures, and the use of radioiso-
topes. Furthermore, these assays include
unbound tracer separation/wash steps and
are relatively time intensive. While such
binding assays have been useful for character-
izing estrogenic compounds with relatively
high ER affinity and aqueous solubility, they
are not necessarily suitable for screening
compounds that may bind only weakly to
the ER and have limited solubility. One
approach to address these problems was the
development of scintillation proximity assays
in which the ER and the scintillant are
bound to a solid phase, either a bead or a
plate, so that only the receptor-bound
radioactive E2, not the excess free tracer, is
close enough to excite the scintillant (44).
This approach eliminates the need to sepa-
rate free from bound ligand, but still relies
upon radioisotopes and immobilization of
the receptor, which could cause disadvanta-
geous conformational changes. Furthermore,
if antibodies are used to immobilize the ER,
another possible interference source is intro-
duced to the assay.

In this report, we describe a new estro-
gen/ER competition binding assay and its
application to the rapid screening of envi-
ronmental compounds for ER binding
activity. This assay uses fluorescence polar-
ization (FP) to monitor the displacement
of a high affinity fluorescent ligand from
purified recombinant human ER (45).
Furthermore, this method can be run at
physiological temperatures, requires less
than half a day to complete, and involves
no radioactivity. We present ER binding
determinations made using this method for
15 natural and synthetic compounds, and
compare each to ER binding affinity
reported by others using traditional radioli-
gand assays and ER from various sources.
Test compounds include the endogenous
steroids E2, estrone, and dihydrotestos-
terone (DHT); the antiestrogen tamoxifen;
the pesticides DDT, methoxychlor,
kepone, and dieldrin; and the industrial
chemicals bisphenol A, butyl benzyl phtha-
late, and certain alkylphenols (Fig. 1).

Materials and Methods
Method theory. FP is used to study molecu-
lar interactions by monitoring changes in
the apparent size of fluorescently labeled or
inherently fluorescent molecules (45-50).
The binding of a fluorescent molecule to
another molecule can be quantified by the
change in its speed of rotation, and FP is a
measure of that speed or tumbling rate.
When plane-polarized light is used to excite
a solution of fluorescent molecules, those
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Figure 1. Structures and abbreviations of all natural and synthetic compounds used in the estrogen recep-
tor binding study.

molecules parallel to the plane will become
excited. If the molecules remain stationary
during the period of excitation (4 nanosec-
onds for fluorescein) the emitted light will
remain highly polarized. If the molecules
tumble during the period of excitation, the
emitted light will be random or depolar-
ized. Polarization and the mathematically
related parameter anisotropy are a measure
of the tumbling rate of the fluorescent mol-
ecule and are directly related to its molecu-
lar volume (45-50). An increase in the vol-
ume of a fluorescent molecule (e.g.,
through its binding to a receptor or anti-
body) or a decrease in molecular volume
(due to dissociation or enzymatic degrada-
tion) can be measured directly by FP. The
observed value is a weighted average of the
polarization values of the individual bound
and free fluorescent molecules and is there-
fore a direct measure of the fraction bound.
The polarization value is easily converted
into the concentration of bound ligand, and
the resultant bound versus free isotherm is

analyzed like those generated by conven-
tional techniques such as radioactivity
(45-50).

The primary components of this assay are
human recombinant ER and an intrinsically
fluorescent nonsteroid estrogen [Fluormone
ES1 (FES 1); PanVera Corporation, Madison,
WI] that binds to ER with high affinity and
was developed by Katzenellenbogen and
colleagues (51). This ligand was chosen
because of its high affinity, stable quantum
yield in various solvents, and very low bind-
ing in the absence of ER. While methods to
obtain ER from natural sources have been
known for some time, full-length human
recombinant ER (hrER) was first expressed
by Brown and Sharp in 1990 (52). These
studies were expanded by Obourn et al.
(53), who showed that hrER made with
baculovirus in insect cells compared favor-
ably to receptor isolated from tissue prepa-
rations in terms of size, immunogenicity,
hormone binding characteristics, phospho-
rylation state, DNA interactions in gel shift
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assays, and thymine interference footprint-
ing. hrER interacts normally with its DNA
response element, further strengthening its
use as a competent alternative to ER puri-
fied from animal tissues (54,55). The hrER
produced in this laboratory using bac-
ulovirus has greater than 80% purity (data
not shown). Using standard hydroxyapatite
[3H] estradiol binding assays, we have cal-
culated a dissociation constant (Kd)
between 0.1 and 0.5 nM hrER and
observed cooperative binding at higher ER
concentrations. These results are compara-
ble to those obtained with ER purified from
natural sources (unpublished observations).

Materials. Human recombinant estro-
gen receptor-a and I (hrER-ax and hrER-~)
and FES1 were obtained from PanVera
Corporation. The 96-well microtitre plates
were obtained from Costar (Acton, MA).
All competing compounds were prepared at
a standard concentration of 10 mM in
ethanol: E2, estrone, and methoxychlor
(98% pure) were from Sigma, St. Louis,
Missouri; diethylstilbesterol (DES; 99%
pure), and dihydrotestosterone (DHT;
99% pure) were from Steraloids, Inc.,
Wilton, New Hampshire; o,p'-DDT (R/S
isomer mix; 99% pure) was from Crescent
Chemical Co., Hauppauge, New York;
chlordecone (kepone; 87.5% pure) and
dieldrin (98.8% pure) were from the EPA
Chemical. Repository stock, Research
Triangle Park, North Carolina; bisphenol A
(99% pure), butyl benzyl phthalate (BBP;
98% pure), p,p'-DDT (98%), and 4-tert-
octylphenol (97%) were from Aldrich,
Milwaukee, Wisconsin. 4-Nonylphenol (p-
isomer mix; 85% pure) was obtained from
Fluka Chemie AG, Buchs, Switzerland.
Hydroxyphenyltrichloroethane (HPTE;
99% pure) was synthesized (56) by W.R.
Kelce (Reproductive Toxicology Division,
National Health and Environmental Effects
Research Laboratory, EPA, Research
Triangle Park, NC).

FESI-hrER direct binding experiment.
Recombinant hrER-a was serially diluted
from 200 nM to 0.391 nM in screening
buffer (40 mM Tris-HCl, pH 7.5; 50 mM
KCI; 5% glycerol; 10% dimethylfor-
mamide; 0.02% sodium azide; 50 pg/ml
bovine gamma globulin) to a final volume
of 100 pl in borosilicate test tubes. FES1
was added to each tube (final concentration
2 nM), followed by mixing. After a 1-hr
incubation (equilibrium was reached after
60 min; data not shown) at room tempera-
ture, the fluorescence anisotropy of each
tube was measured on a Beacon 2000
Fluorescence Polarization Instrument
(PanVera Corporation) with 360 nm exci-
tation filter and 530 nm emission filter.
Anisotropy at each ER concentration was

then converted to fraction bound ligand
using the following equation:

F= (A-Af)I(Ab-Af),
where Fb = fraction of ligand bound, A =
observed anisotropy, and Ab and Af =
anisotropy values of the bound and free lig-
and, respectively (45-5(0). Bound ER (ERb)
was assumed to be equal to bound ligand
(Lb), and therefore calculated by multiplying
Fb by the total ligand concentration (Lt).
Free ER (ERf) was calculated by subtracting
ERb from ERt. The equilibrium Kd was cal-
culated from the ER-bound versus ER-free
isotherm using a nonlinear least-square curve
fitting program (Prism, Graphpad Inc., San
Diego, CA). We did not observe nonspecific
binding of the FES1 to glass or plastic tubes
or to ER In the case of glass, free FES1 has a
very low polarization value, consistent with
its unhindered mobility. Binding of FESI to
the test tube (leading to immobilization and
removal from the light path) would have dra-
matically raised the polarization value and
decreased the fluorescence intensity. In the
case of plastic, we could not detect a nonspe-
cific binding component in the binding
isotherms. We analyzed the curves by nonlin-
ear least-squares regression using models with
and without a nonspecific binding term and
found no difference between the analysis.
Indeed, it is a hallmark ofFP assays that non-
specific binding is largely eliminated because
the assay does not depend on a solid support
surface.

Competitive binding studies. Fifteen
compounds were tested for their ability to
displace the fluorescent ligand ES 1 from an
ER-ES 1 complex. The large ER-ES 1 com-
plex tumbles slowly and therefore has a
high anisotropy value. As increasing con-
centrations of a competing ligand displace
the ES 1 from the complex, the free ES 1
molecules tumble more rapidly and have a
low anisotropy value. The measured
anisotropy is a weighted average of the
bound and free ES 1 molecules. As more
ES 1 molecules are displaced from the com-
plex, the measured anisotropy approaches
the free anisotropy value.

Specifically, a 200-pM working stock of
each competing test compound was pre-
pared from the original 10-mM ethanol
stock and was serially diluted in triplicate in
screening buffer to the desired concentra-
tions. hrER-ax and FES 1 were added to a
final concentration of 2 nM and 3 nM,
respectively. Negative (ER + FES1, equiva-
lent to 0% inhibition) and positive (free
FES1, equivalent to 100% inhibition) con-
trols in the absence of competitor were
measured in triplicate. After 60 min at
room temperature, the anisotropy values in

each tube were measured using the Beacon
2000 system. The anisotropy values were
converted to percent inhibition using the
following formula: I% = (A0-A)I(A%-Aloo) x
100, where I%, Aoy Aloo) and A are the per-
cent inhibition, A at 0% inhibition, A at
100% inhibition, and observed A value,
respectively. Polarization values were con-
verted to percent inhibition to make the
data more intuitive to the reader and to
normalize the day-to-day differences in the
starting 0% inhibition polarization values.
The percent inhibition versus competitor
concentration curves were analyzed by non-
linear least-squares curve fitting and yielded
an IC50 value (the concentration of com-
petitor needed to displace half of the bound
ligand). To compare binding affinities of
the test compounds to those reported in the
literature, IC50 values were converted to rel-
ative binding affinities (RBA) using E2 as a
standard. The E2 RBA was set equal to 100
[RBA = (IC50/IC50 of E2) X 100].

RBAs are a convenient way to compare
test compounds because they tend to mini-
mize variability in operators, instrumenta-
tion, preparations, and assay conditions.
While not necessary, IC50 values can be
converted into K; (inhibition constants).
Several corrections have been presented in
the literature (57-591. For example, in this
study we used Kenakin's correction to con-
vert the IC50 for E2 (13 nM) into a Ki of
0.6 nM (57-591, similar to the Kd of the
E2-ER complex using a direct binding
study. The correction is

Ki = (0.5 Br )(IC50)(Kd)/[(L, X RT)
+ 0.5 Br(Rr-Lr+0.5 Br-Kd)]

where Br, IC50, L½' and RT are bound lig-
and, concentration of competitor at 50%
inhibition, total ligand, and total receptor,
respectively.

Results and Discussion
While not necessary, a low Kd for the
ER/FES1 interaction, similar to that for E2/
ER would reduce the amount ofER needed
and make development of this assay easier.
Direct binding studies of FES1 to hrER-ot
using the FP method are presented in Figure
2. In this experiment, a constant amount of
FES 1 was titrated with increasing concentra-
tions of hrER-ac. At each receptor concen-
tration, the FP value was measured and used
to calculate the amount of bound
(FES1-hrER-ax) and free hrER-ax. The
FES1-hrER-a interaction had a Kd of 0.3
nM and exhibited positive cooperativity.
These results compare favorably to the affin-
ity obtained for radioactive E2 and native
ER, and their observed cooperativity (60).
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The competition binding curves gener-
ated for 15 compounds that compete to
varying degrees with FES 1 binding to hrER-
a are shown in Figure 3. On each graph, the
y-axis is reported as the percent inhibition of
ES1 binding. The resulting classic competi-
tive binding curves can be analyzed by a

Figure 2. The binding isotherm of human recombi-
nant estrogen receptor a (hrER-a) and fluores-
cent estrogen (FES1). Increasing concentrations
of hrER were incubated with 2 nM FES1 for 60 min
at room temperature (220C) followed by measure
of fluorescence polarization. Polarization data

3 was converted to fraction bound and plotted
against free hrER-a (see Materials and Methods).
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variety of methods in order to assess the
potency of the competitor molecule. The
IC50 values for each test compound were
calculated by nonlinear least-squares regres-
sion and are shown in Table 1. To more eas-
ily compare the hrER-a binding capacity of
test compounds to each other and to values
reported by others, the RBA for each com-
pound in relation to the natural ligand E2
was also calculated and is reported in Table
1 (E2 RBA = 100). All compounds exam-
ined in this study demonstrated some ability
to displace the fluorescent ligand FES 1 from
the hrER-a. However, it should be recog-
nized that the androgenic steroid DHT; the
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Figure 3. Competition binding curves of various compounds against a human recombinant estrogen receptor a/fluorescent ligand complex (hrER-a-FES-1).
Abbreviations: E2, 17p-estradiol; DHT, dihydrotestosterone; DES, diethylstilbestrol; HPTE, hydroxyphenyltrichloroethane; BBP, butyl benzyl phthalate. Increasing con-
centrations of competitor were incubated with 2 nM hrER-ac and 3 nM FES1 for 60 min at room temperature (22TC) followed by measurement of fluorescence polariza-
tion. Polarization data was converted to percent inhibition and plotted against competitor concentration (see Materials and Methods). Data points and error bars repre-
sent the mean percent inhibition value ± 1 standard deviation (n = 3).
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pesticides dieldrin, p,p'-DDT, and
methoxychlor; and the plasticizer BBP,
which induce little to no estrogen activity in
other in vitro or in vivo estrogen screens
(43,61-67/), all failed to displace more than
50% of FES1 from hrER-a at treatment
concentrations exceeding 100 pM (Fig. 3
and Table 1).

The E2 metabolite estrone displayed an
RBA of 2.1 in the FP assay, which is weaker
than a determination of 60 made by Kuiper
et al. using in vitro-translated rat ER at 40C
in a gel filtration (64), and the RBA
obtained from traditional 40C binding
assays involving mouse uterine ER (63) or
human ER from MCF-7 cells (68). The
pharmaceutical estrogen DES was found to
have an hrER-a RBA slightly greater than
E2, which is similar to the determination
made by Shelby et al. with mouse ER (43),
but lower than the values obtained by others
with mouse, rat, or human ER (63,64,659.
The RBA value determined with the FP
binding assay for the pharmaceutical anti-
estrogen tamoxifen is similar to those report-
ed by others (43,64).

Using the FP binding assay, the o,p'-
DDT isomer of the pesticide DDT was
found to have 4-10 times higher binding
affinity for hrER-a than the p,p'-DDT iso-
mer component. While this relationship
between isomer and ER affinity is the same
as found by others using MCF-7 or mouse
ER (61,63), both isomers display higher
affinity for the ER in the FP binding assay
(Table 1). In the case of the estrogenic pesti-
cide methoxychlor (12,25), this parent com-
pound was found to have a much lower
hrER-a RBA using the FP assay than its
estrogenic metabolite HPTE. Furthermore,
these ER binding values for methoxychlor

and HPTE correspond closely to previous
determinations (43,63,64). The estrogenic
pesticide kepone (10,11,24) had an hrER-a
RBA value in the FP assay that is similar to
the ER binding interactions reported from
other laboratories (43,63). At the same time,
the pesticide dieldrin was found to have
only the extremely weak interaction with
hrER-a that has been reported by others
(66,70).

The industrial chemical bisphenol A,
which has been shown to have estrogenic
effects in vitro and in vivo (26,67,71,72),
maintained a weak but significant hrER-a
interaction in the FP binding assay. This
RBA value for bisphenol A is similar to
that reported by Kuiper et al. (64), but it is
significantly lower than observed by Waller
et al. (63). The ER binding capacity of the
estrogenic alkylphenols 4-tert-octylphenol
and 4-nonylphenol (30) determined with
the FP method are similar to those
obtained from the mouse uterine ER assay
by Waller et al. (63), but higher than deter-
minations made with ER derived from
trout or MCF-7 cells (27,61). The plasti-
cizer BBP, which has been shown to exhib-
it weak estrogenic properties in some assay
systems (62), was shown to have only mini-
mal binding interactions with the hrER-a
that were barely detectable with the FP
assay (Table 1).

When considering the ability of the FP
binding assay used in this study to replicate
the ER binding determinations made by
others, a few important points should be
highlighted. First, there is not necessarily a
correspondence between the ER RBAs
reported by other laboratories, employing
various binding assay techniques or receptor
sources, for this diverse set of compounds

Table 1. Relative binding affinities (RBAs) of tested compounds

Compound FP IC50 FP RBA RBA values from literaturea References

E2 13 nM 100
Estrone 626 nM 2.1 60h, 60m (63,64)
DHT 126-146 pM' 0.01-0.009 0.05h, 0.026m (63,64)
DES 11 nM 118 470h,470r, 130m,370m (43,63,64,69)
Tamoxifen 423 nM 3.1 7.0h, 6.Om (43,64)
p,p'-DDT 14-50 pM' 0.09-0.03 0.00026m (63)
o,p'-DDT 2.7 pM 0.4 0.01r, 0.00031f, 0.17m, 0.090m (43,61,63,69)
Methoxychlor 81-193 pMb 0.02-0.007 0.01 h, 0.01 m,c 0.0038m (43,63,64)
HPTE 750 nM 1.7 1.3m, 5.2m (43,63)
Kepone 5.7 pM 0.2 0.Olm,CO.019m (43,63)
Dieldrin 470-4,500 pMb 0.003-0.0003 0.002h,c 0.0005rc (66,74)
Bisphenol-A 32 pM 0.04 0.05h, 0.018m (63,64)
4-tert-Octylphenol 7.5 pM 0.2 0.1t, 0.2m (27,63)
4-Nonylphenol 3.9 pM 0.3 0.021f, 0.05t, 0.01 m,c 0.313m (27,43,61,63)
BBP 73-120 pMb 0.02-0.01 0.3t, 0.0034m (63,75)
Abbreviations: FP, fluorescence polarization; 1C50, concentration that inhibits 50%; E2, 17p-estradiol; DHT, dihydrotestos-
terone; DES, diethylstilbestrol; HPTE, hydroxyphenyltrichloroethane; BBP, butyl benzyl phthalate. The 1C50 of each com-

pound was compared to the 1C50 for E2.
'The letters after the RBA value indicate the source of ER in the assay: h, human; m, mouse; r, rat; t, trout; f, MCF-7 cells.
bThese values represent the 95% confidence limit range (leading to a range of associated RBA values); in these cases, lC50s were difficult to

determine usually because of solubility limitations.
CRBA values prefaced were calculated from IC50 values that we estimated from the cited literature.

reported in Table 1. The possible range of
receptor purity obtained in these dissimilar
preparations, as well as the fact that ER
from distinct species may differ significantly
in the ligand binding domain (73), may
account for such differences. Even when the
high purity and stability of the recombinant
human ER used in the FP assay is taken
into account, the extrapolation of receptor
binding results from human to other species
is undear. It is possible that using a purified
ER preparation in this assay unduly simpli-
fies the ligand-ER interaction, but FP
assays are ideally suited for assessing the
effects of added binding components.
Second, when the FP binding assay's ability
to evaluate receptor occupancy at true equi-
librium conditions and at a relevant tem-
perature is considered, it is not unexpected
that RBA values obtained by FP might dif-
fer from those obtained using traditional
40C binding assays. It is possible that the
relatively high ER RBA values obtained
from the FP assay for some chemicals (e.g.,
the DDT isomers and BBP) are a reflection
of this method's more realistic experimental
conditions. At the same time, the observa-
tion that some estrogens displayed a weaker
than expected affinity for ER in the FP
assay (estrone, DES, and bisphenol A) may
also be due to temperature or equilibrium
condition effects. Finally, when considering
industrial or environmental compounds
that are difficult to obtain as pure samples
(e.g., 4-tert-nonylphenol), differences in ER
affinity between laboratories may be related
to sample source. Taken together, the ER
RBA values obtained in this study are with-
in the range of determinations reported by
other laboratories. Most importantly, the
ER binding interactions determined with
the FP binding assay in this study are simi-
lar to the evaluations of estrogen activity
made for these same compounds using
other in vitro methods (43,61,67,68,70).

Because screens involving both ER sub-
types (a and 0) will be required to com-
pletely evaluate the endocrine disruption
potential of environmental estrogens, we
applied the FP technology to binding stud-
ies involving ER-B as well as ER-a. The A;
for this FES1-ER-P interaction was esti-
mated at 0.15 nM (data not shown), which
compares favorably with the KA determined
by others using a direct binding study
between [3H] estradiol and hrER-P (64).
The effect of increasing amounts of E2 on
the integrity of an FES1-hrER-P complex
is shown in Figure 4. Thus, the FP receptor
binding method presented in this study has
considerable potential for analyses involv-
ing ER-,. In addition, while our current
studies describe an FP competition assay
for human ER subtypes, this same strategy
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is being used to design assays for other
receptors in the steroid hormone receptor
superfamily such as the androgen, gluco-
corticoid, and thyroid hormone receptors.
In each case, the limiting factor is the avail-
ability of a fluorescent hormone analog
with characteristics suitable for use in FP.
Ongoing research in our laboratory is
aimed at developing novel fluorescent lig-
ands for other receptors.

The FP receptor binding assays in general
offer several advantages over other receptor
binding technologies. First, the FP method
uses-no radioactivity. Second, FP measure-
ments are done in solution, allowing mole-
cules to be studied at true equilibrium and at
relevant temperatures. When considering the
task of screening environmental contaminants
and other compounds that may have relatively
weak binding interactions with the ER, the
ability to study equilibrium binding at tem-
peratures relevant to potential exposure sce-
narios is advantageous. Third, this method
gives a direct measure of a tracer's bound/free
ratio; no separation ofbound and free tracer is
required. The filtering, precipitation, and/or
centrifigation steps common to other binding
assays is eliminated. Thus, because manipula-
tion or alteration of the sample is not required
in this assay, artifactual loss of signal through
handling does not occur. For example, during
the wash steps of filter binding assays, signifi-
cant release and loss of the precipitated signal
may occur. Fourth, because the same tube is
used for reaction and FP measurement, each
reaction mixture's approach to equilibrium
can be monitored by repeated measurements
(e.g., every 6 sec), allowing direct determina-
tion of the binding reaction kinetics. Fifth, FP
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Figure 4. Competition binding curve of 17p-estra-
diol (E2) against an estrogen receptor P3 (hrER-
P)-FIES1 complex. Increasing concentrations of
unlabeled E2 were incubated with 250 pM FESi
and 1 nM hrER-j3 overnight at 220C followed by
measure of fluorescence polarization. Polarization
data was converted to percent inhibition and plot-
ted against E2 concentration. An IC50 (concentra-
tion that inhibits 50%) of 5.5 nM was determined
by nonlinear least squares (see Materials and
Methods). Data points and error bars represent
the mean fraction bound value ± 1 standard devia-
tion (n = 3).

measurements do not have deleterious effects
on sample or receptor. Samples can be ana-
lyzed, treated, and then reanalyzed. Different
treatments of the same sample might involve
the addition of detergent, dissociating agent,
or excess unlabeled ligand or even a tempera-
ture shift. Mixtures of estrogenic compounds
can also be easily analyzed in a stepwise or
dynamic fashion with this assay. Lastly, the
overall simplicity of this FP receptor binding
assay results in a method that can easily be
adapted to a high throughput (microtiter
plate) format.

A limitation of FP competition assays is
that a relatively pure preparation of receptor
is required in order to bind a significant per-
centage of fluorescent ligand. In the present
study, the effects of secondary factors are not
assessed. On the other hand, the effect of
accessory proteins, added to the assay
matrix, can be evaluated with a systematic
approach. A caveat to using fluorescence
detection methods in screening a large panel
of organic compounds is the potential for
fluorescence from the test compounds. FP
measurements are less sensitive to this type
of interference because fluorescence in the
test compound can be subtracted out before
the FP measurement is made.

In conclusion, the novel FP technology
presented here represents the first receptor
binding assay that is practical for use as a
large-scale screening tool to characterize the
ER binding interactions of pharmaceutical,
environmental, and industrial compounds.
Furthermore, considering the highly uni-
form source of receptor used and the sim-
plicity of this assay, the potential that this
method could be standardized between lab-
oratories is considerable. Thus as part of a
comprehensive battery of in vitro and in vivo
tests for endocrine activity, the FP binding
assay presented in this report can provide
mechanistically pure information to define
the mode of action of an EDC and other-
wise assist in EDC hazard identification.
Furthermore, the highly uniform receptor
binding data derived from FP binding stud-
ies should also have application in the devel-
opment of quantitative structure-activity
models to prioritize compounds for further
testing of endocrine activity.
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